Developing Microwave Heat Transfer Model for Frozen Mashed Potato Packed in Microwavable Tray

K. Pitchai1, J. Raj1, J. Chen1, S. Birla1, R. Gonzalez2, J. Subbiah1

2012 Annual International Meeting
Dallas, TX

July 30, 2012
Session: Microwave and Radio Heating and Drying

1University of Nebraska – Lincoln
2ConAgra Foods, Inc.
Introduction

- Increasing demand for microwaveable foods
- Non-uniform heating is an inherent issue
- Main cause of concern is in food safety
- Modeling can be used as a tool to:
 - understand microwave interactions with food
 - design food products with better heating performance
Objectives

- Develop a fully coupled microwave electromagnetic-heat transfer model for homogeneous model food (mashed potato) packed in 10-oz food tray
- Validating the model qualitatively and quantitatively with experimental work
Coupled Electromagnetic – Heat Transfer Microwave Model

Power dissipation

Heat equation

Maxwell's equation

Temperature field

EM properties

\[\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + Q \]

\[\oint E \cdot dA = \frac{q_{enc}}{\varepsilon_0} \]

\[\oint B \cdot dA = 0 \]

\[\oint E \cdot ds = -\frac{d\Phi_B}{dt} \]

\[\oint B \cdot ds = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt} + \mu_0 i_{enc} \]
Solution Approach

• Finite element based commercial software
• COMSOL 4.2a Multiphysics
Meshing

- Adaptive meshing scheme was used for different model domains (air, turntable, food tray)
- Tetrahedral elements
- Number of elements is \(~196\) K
Assigned Inputs

- Frequency - 2.45 GHz
- Power - 1100 W
- Wave feed - Coaxial magnetron
Solver Setup

- Electromagnetic and heat transfer equations were solved in fully coupled approach.

 - Electromagnetic and temperature fields solved for smaller time step within a time step.
Experiments

- Temperature dependent properties measured from -10°C to 110°C
- Mashed potato tray heated for 5 min
- Thermal images collected at three layers
- Four point temperatures measured
Validation Tools

Top image
Middle image
Bottom image

Graph showing temperature over time for Sensor 1, Sensor 2, Sensor 3, and Sensor 4.
Mashed Potato Preparation

- Fill 500 g of mashed potato in the tray
- Covered with shrink wrap film
Measuring Dielectric and Thermal Properties

Dielectric properties setup

Differential Scanning Calorimetry

KD-2 Pro
Dielectric Properties of Mashed Potato

Dielectric properties

Temperature, °C

-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

Dielectric Constant

Loss Factor
Specific Heat Capacity of Mashed Potato

[Graph showing the specific heat capacity of mashed potato as a function of temperature. The x-axis represents temperature in °C, ranging from -20 to 140, and the y-axis represents specific heat capacity in KJ/Kg°C, ranging from 0 to 120.]
Qualitative Validation

<table>
<thead>
<tr>
<th></th>
<th>Simulation</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quantitative Validation

Experiment and Simulation Comparison

Temperature, °C vs. Time, min

- Temperature, °C
- Time, min
- Experiment
- Simulation
Quantitative Validation

![Graphs showing temperature over time for experiment and simulation.](image-url)
Conclusion

- Electromagnetic-heat transfer model developed for microwave interactions with homogeneous food

- Qualitatively, the model agreed well with thermal images

- Quantitatively, the model performance need to be improved.
Future work

- Quantitative prediction accuracy need to be improved
- Include mass and momentum transfer physics
- Validate for real-world food products
Acknowledgement

- ConAgra Foods, Inc.
- USDA CSREES – NIFSI grant (Project number: 2008-51110-04340)
Questions?

pkrishnamoorthy@huskers.unl.edu